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Complete band gaps for liquid surface waves propagating over a periodically drilled bottom
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A plane-wave expansion approach is developed to solve the mild-slope equation for liquid surface waves
propagating over a bottom with periodic structures. Band structures are calculated for the bottom periodically
drilled with the square or triangular lattice of holes. Complete band gaps are found for both lattices. Parameters
that influence the formation of band gaps are discussed.
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I. INTRODUCTION

When propagating in periodic structures, classical wa
are greatly modulated by the introduced periodicity@1#. As a
result of multiple Bragg scatterings, wave propagation in
periodic structures is characterized by band structures.
tween bands there may exist a band gap within which w
propagation is absolutely forbidden. In the last few years,
idea of the existence of band gaps has been extende
photonic crystals for electromagnetic waves@2–7# and to
sonic crystals for elastic waves@8,9# provided that their con-
stituent materials are periodically arranged.

Liquid surface waves are also modulated by the int
duced periodicity if propagating in periodic structures. Ba
structures and band gaps can also exist for liquid surf
waves. Recently, there have been some theoretical calc
tions on the band structures and the possibility of the e
tence of band gaps for liquid surface waves propagating
periodic structures@10–15#. No complete band gaps, how
ever, were found in Refs.@10–14#. Experimental work has
also been carried out to study surface liquid waves propa
ing over a periodically drilled bottom@12,16#. In Ref. @12#,
band structure was measured. No complete~for all propagat-
ing directions! band gaps were observed. Only partial ba
gaps along certain directions in the Brillouin zone we
found. Bloch waves were clearly observed due to the Br
resonance@12,16#.

In this paper, the plane-wave expansion method is app
for solving the mild-slope equation~MSE! @17–22# in order
to investigate band structures for liquid surface waves pro
gating over a periodically uneven bottom. The paper is or
nized as follows. In Sec. II, the plane-wave expansion
proach is developed for solving the MSE. The calcula
results and discussions are presented in Sec. III. Conclus
are given in Sec. IV.

II. PLANE-WAVE EXPANSION APPROACH TO THE
MILD-SLOPE EQUATION

Liquid surface wave propagation over an uneven bott
is a classical hydrodynamics problem@19,20,23#. It is a com-
plicated three-dimensional problem. In the case of step-w

*Author to whom correspondence should be addressed. Electr
address: jzi@fudan.edu.cn
1063-651X/2003/68~6!/066308~5!/$20.00 68 0663
s

e
e-
e
e
to

-
d
e
la-
-

in

t-

d

g

d

a-
-
-

d
ns

e

bottoms, waves consist of both propagative and evanes
terms. When the bottom slope is mild or when we only co
sider the overall wave propagation, the velocity potentialF
can be approximated as

F~x,y,z,t !'ReH w~x,y!
coshk~z1h!

coshkh
exp~2 ivt !J ,

~1!

whereh is the variable liquid depth andw is the complex
horizontal variation. For inviscid liquids, the angular fr
quencyv and the local wave numberk are related by the
following dispersion relation

v25gk~x,y!tanh@k~x,y!h~x,y!#, ~2!

whereg is the gravity’s acceleration. It should be mention
that the above slowly spatially varying dispersion relation
a consequence of a slowly varying depth function and
essentially a classical WKB approximation@24#.

The MSE, originally proposed by Berkhoff@17,18#, has
been widely used to deal with the evolution of liquid surfa
waves over varying topography. The previous calculations
band structures for liquid surface waves are based eithe
the shallow water equations@11,12# or on the Helmholtz
equation@13#. The MSE reduces to the Helmholtz equatio
in deep liquid and constant liquid depth, and to the shall
water equations in shallower liquid under the conditionkh
!1. In the case of a bottom with periodic structures, we s
with the MSE, which has wider applications and gives mo
reliable results than the shallow water equations@23,25#. The
MSE may be taken in the form@21,22#

~“•ccg“1k2ccg!w50, ~3!

where“[(]x ,]y) is the horizontal gradient,c5v/k is the
phase velocity, andcg5dv/dk is the group velocity. Al-
though the theory is appropriate for slowly varying bottom
the analysis and the qualitative physical features for drill
discontinuous bottoms are expected to be not too differ
@14#. By introducing a new parameter

u[ccg /g5
tanh~kh!

2k S 11
2kh

sinh~2kh! D , ~4!

the MSE can then be rewritten as the form
ic
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~“•u“1k2u!w50. ~5!

Note thath, k,c, cg , and u are all functions of horizonta
coordinatesr5(x,y). Reasons for introducing the new p
rameteru are that it has a length dimension and is an imp
tant parameter for the formation of band gaps~to be shown
later!. The physical meaning ofu can be seen from the fol
lowing discussions. Comparing Eq.~5! with the master equa
tion for electromagnetic waves propagating in photonic cr
tals @5#, it is easy to find that the introduced new quantityu
plays a role similar to the dielectric constant« in the master
equation, a crucial parameter to determine photonic b
gaps in photonic crystals. It should be noted thatu is fre-
quency dependent. For low frequencies,u is approximately
the nominal liquid depthh. For high frequencies, however,u
is proportional tov22, independent ofh. No band gaps are
expected for high frequencies since these high freque
waves view the uneven bottom as even one. Therefore,u can
be viewed as theeffectiveliquid depth, an important param
eter to determine the existence of band gaps.

We consider liquid surface waves propagating over a
periodically uneven bottom. A plane wave approach
adopted to solve the MSE, similar to electronic@26# and
electromagnetic@5,27# waves propagating in periodic sys
tems. In this system the liquid depth is a spatially perio
function. For a given frequency,k andu are different in the
drilled and nondrilled area. They are also periodic functio
of (x,y). The horizontal velocity potentialw must be the
Bloch function. This Bloch function contains a Bloch wav
vector due to the result of the introduced periodicity. T
periodic functionsu and k2u can be expanded by plan
waves

u~r !5(
G

AGeiG"r, ~6!

k~r !2u~r !5(
G

BGeiG"r, ~7!

whereG5(Gx ,Gy) is the 2D reciprocal lattice vectors. Th
field w, which is the Bloch function, can be also expand
by plane waves, namely

w~r !5(
G

CG,qe
i (G1q)•r, ~8!

whereq is the Bloch wave vector in the first Brillouin zon
@28#. The Fourier coefficientsAG and BG can be obtained
from

AG5
1

VE
unit cell

u~r !e2 iG•rdr , ~9!

BG5
1

VE
unit cell

k~r !2u~r !e2 iG•rdr , ~10!

whereV is the area of the unit cell. Substituting Eqs.~6!–~8!
into Eq. ~5!, we obtain
06630
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QG8,G~q,v!CG,q50, ~11!

where

QG8,G~q,v!5@~G1q!•~G81q!#AG82G2BG82G .
~12!

It is easy to show that the matrixQ(q,v) is Hermitian. To
ensure that Eq.~11! has nontrivial solutions, the determina
of the matrixQ(q,v) must be zero

detuQ~q,v!u50. ~13!

Band structures can then be obtained by solving the ab
equation. The number of plane waves is determined by
truncation of reciprocal lattice vectors. To guarantee the
isfactory convergence of the eigen values, enough pl
waves are needed. It is noticed that Eq.~11! is not a standard
eigenvalue problem since the expansion coefficientsAG and
BG are dependent onv. A root finder is used to obtain the
eigenvalues for a given wave vectorq.

FIG. 1. Calculated band structures for the square lattice. Exp
mental results from Torreset al. @12# are shown with their corre-
sponding error bars. The irreducible Brillouin zone is shown
inset. ~a! a52.5 mm, R50.75 mm, h050.2 mm, and h1

52.2 mm. ~b! a57.5 mm, R51.75 mm, h050.55 mm, andh1

52.55 mm.
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III. CALCULATED RESULTS AND DISCUSSIONS

We consider the bottom consisting of drilled cylindric
holes with radiusR arranged in a periodic way. The liqui
depth over the bottom is denoted byh0 and the depth ove
the cylindrical holes byh1. Therefore,h12h0 is the depth of
the cylindrical dimples. Two types of lattices of cylindric
holes are considered, i.e., the square lattice and the triang
lattice. The lattice constant is denoted bya. In all the follow-
ing calculations, the results are obtained by using 253 pl
waves for the square lattice and 285 plane waves for
triangular one. The accuracy is carefully checked by us
plane waves of more than a thousand. Thus, we believe
all results presented here are accurate to within at least 1
their true values. To compare with the experimental resu
the liquid considered in our calculations is the same as
experiments@16,12#. It should be mentioned that for the ge
ometries discussed below, the capillary effect will play a r
@12# and should be taken into account. Therefore, the dis
sion relation of Eq.~2! should be replaced byv25gk(1
1dc

2k2)tanh(kh) @16#, wheredc is the capillary length, taken
to be 0.93 mm@12#.

In Fig. 1 the calculated band structures for the bott
drilled with the square lattice of holes together with the e
perimental results are shown. The geometry parameters
Fig. 1~a! are the same as in experiment@12# for studying the

FIG. 2. Gap map as a function of the filling fraction for th
square~a! and triangular~b! lattices of holes. Gray areas deno
band gap regions. For both lattices,a522 mm, h050.2 mm, and
h152.2 mm.
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band structure, while those for Fig. 1~b! are the same as in
experiment@16# for visualizing Bloch waves and domai
walls. It can be seen from Fig. 1~a! that the calculated result
are in good agreement with the experimental ones. For
geometry in Fig. 1~b!, the Bloch wave patterns were pre
sented in the experiment@16#. By inspecting the profiles of
the corresponding modes, it is found that the calculated p
files are in accord with the observed ones.

Recall that in experiment@12# no complete band gap
were found. To investigate the possibility of the existence
band gaps, the gap maps as the function of the filling fract
f, defined as the fraction area occupied by the drilled hole
a unit cell, are given in Fig. 2 for the square and triangu
lattices. For both lattices,a522 mm, h050.2 mm, andh1
52.2 mm are taken. For the square lattice, there may e
two band gap regions. The first exists if the filling fraction
within the range between 0.32 and 0.58, while the sec
one exists for the filling fraction within the range betwe
0.35 and 0.71. The range of the filling fraction that rend
the existence of the band gap possible for the first band
is smaller than that for the second one. Moreover, the wi
of the second band gap is larger than that of the first one
the same filling fraction. For the filling fraction outside th
range there are no band gaps. For the first band gap
optimal filling fraction that gives a maximum ratio of the ga
width to the midgap frequencynv/v54.6% occurs atf

FIG. 3. Band structures for the square~a! and triangular~b!
lattices. The parametersa, h0 , h1 are the same as in Fig. 2 and th
radius of the drilled holes isR58.8 mm for both lattices. The
irreducible Brillouin zone is shown as inset.
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50.49. For the second band gap the optimal filling fract
is f 50.51, leading to a maximumnv/v57.5%.

For the triangular lattice, the first band gap exists for
filling fraction within the range between 0.08 and 0.8
which is much larger than that for the square lattice. T
maximum value of the ratio of the gap width to the midg
frequency occurs at the optimal filling fractionf 50.58, be-
ing 43%. The width of the band gap for the triangular latti
is much larger than that for the square lattice for the sa
filling fraction. Therefore, the triangular lattice is muc
easier to open up a band gap than the square lattice.

In Fig. 3, the band structures for liquid surface wav
propagating over the periodically drilled bottom are show
For both lattices,a, h0, andh1 are the same as in Fig. 2 an
the radius of the drilled holes isR58.8 mm. For the square
lattice, there are two band gaps. The first gap spans f
2.00 to 2.09 Hz, while the second one from 2.79 to 3.01
The width of the second band gap is larger than that of
first one. For the triangular lattice, the band gap is very lar
spanning from 1.88 to 2.93 Hz. Clearly, there do exist ba
gaps for liquid surface waves propagating over the 2D p
odically drilled bottom, contrary to the previous studies@12#.

Basically, there are four parameters that influence the
mation of band gaps, namelyh1 /h0 , a/h1 , f, and the lattice
symmetry. It is rather intuitive thath1 /h0 is very crucial for
the formation of a band gap. If it is too small there should

FIG. 4. Ratio of the gap width to the midgap frequency as
function ofh1 /h0 for the square~a! and triangular~b! lattices. Solid
and dashed lines denote the first and second band gap, respec
For both lattices,h050.2 mm,a522 mm, andR58.8 mm.
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no band gaps. The ratio of the gap width to the midg
frequency as a function ofh1 /h0 is shown in Fig. 4 with
h050.2 mm anda522 mm for both lattices. For the squar
lattice, the minimum value ofh1 /h0 required for opening up
a band gap is 7.70 for the first band gap and 7.96 for
second one. For the triangular lattice, the minimum value
h1 /h052.15 is required to open up a band gap. For the sa
h0 anda/h1, the required minimum value ofh1 /h0 for open-
ing up a band gap is much smaller for the triangular latt
than for the square lattice. This indicates again that the
angular lattice is more amiable for the formation of a ba
gap than the square lattice. It is noted that the ratio of the
width to the midgap frequency increases with increas
h1 /h0 and turns to a constant for largeh1 /h0 for h1 /h0
larger than the minimum value required for opening up
band gap. This implies that the band structure is independ
of h1 for largeh1 /h0.

As regard toa/h1, it is also an important parameter fo
the formation of a band gap. Its importance is not as intuit
ash1 /h0 and is not noticed in the previous studies@11,12#.
The ratio of the gap width to the midgap frequency as
function ofa/h1 at the optimal filling fraction is given in Fig.
5. There is no band gap fora/h1 below a certain value. Fo
the square lattice, the minimuma/h1 required for producing
a band gap is 6.60 and 6.16 for the first and second band
respectively. For the triangular lattice, this minimum value

a

ely.

FIG. 5. Ratio of the gap width to the midgap frequency at t
optimal filling fraction as a function ofa/h1 for the square~a! and
triangular~b! lattices withh050.2 mm andh152.2 mm. Solid and
dashed lines denote the first and second band gap, respective
8-4
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2.21. In the previous studies of the band structures for liq
surface waves, no complete band gaps were found@11,12#.
The reason lies in the fact thata/h1 is below the minimum
required value for opening up a band gap.

For a/h1 larger than the minimum value required fo
opening up a band gap, the ratio of the gap width to
midgap frequency increases witha/h1, while the midgap
frequency decreases accordingly. It is interesting to note
for largea/h1 this ratio turns to a constant. Meanwhile, th
optimal filling fraction also approaches a constant. This
dicates a very interesting feature of scaling, similar to tha
dielectric photonic crystals@5#. In other words, if we change
the lattice constant scale of the system by a factors and keep
h0 , h1 /h0, and f unchanged, the band structures are
scaled by the same factor, namelyv(q)/s. This is because
for very largea/h1 the lower band gaps occur at low fre
quency. The effective depthu is approximately the nomina
depth for low frequencies. This scaling property is check
by our numerical results. It should be noted that there is
such a scaling property for smalla/h1 and for high frequen-
cies.

In the above discussions, we have used MSE in the st
of band structures for liquid surface waves propagation o
periodically drilled bottoms. In the previous theoretical a
experimental studies, no complete band gaps were fo
The reason lies in the geometry parameters chosen. If pr
geometry parameters are used, complete band gaps ca
found. If the shallow water equation is used instead of MS
the band gaps found are usually larger than those predi
by MSE. This is because in the shallow water equation,
s

L

cı

g,
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approximationhk!1 is used. It leads to an effective liqui
depthu being the nominal one even for high frequencies.
some cases, the shallow water equation predicts unphy
results because of the too rough approximation used.

IV. CONCLUSIONS

A plane-wave expansion method was developed to so
the MSE for surface liquid waves propagating over a bott
with periodic structures. Band structures were calculated
both the square and triangular lattices. It was found that
both lattices there do exist complete band gaps, contrar
the previous studies. It is more amiable to open up a b
gap for the triangular lattice than for the square lattice. Mo
over, the triangular lattice possesses a larger band gap
the square lattice. The parameters that influence the for
tion of band gaps were discussed. The reason why no b
gaps were found in the previous studies lies in the fact t
the ratio of the lattice constant to the depth over the dril
holes is below the required value. An interesting scal
property was found for low frequencies and a large ratio
the lattice constant to the depth over the drilled holes.
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